
LSHADE with S-shape Constraint-handling
Technique in Push and Pull Search for Constrained

Optimization Problems
Jinglei Guo1, Tianpei Cheng1, Zhun Fan2†, Xinyu Zhou3

1School of Computer Science, Central China Normal University, Wuhan, China
2Department of Electronic Engineering, Shantou University, Shantou, China

3School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China
† Corresponding author: zfan@stu.edu.cn

Abstract—Constrained optimization problem is a common
issue in science and engineering. The key to solve this problem
is to balance the relationship between constraints and objectives.
Therefore, this paper proposes an s-shape constraint-handling
method in push and pull search (SLSHADE PPS), which divides
the whole evolutionary process into two phases, called push
search phase and pull search phase respectively. The push search
phase mainly focuses on the value of the objective function and
uses LSHADE to push the population into the optimal region
of the objective function. In the pull search phase, the s-shape
constraint handling technique is combined with LSHADE to pull
the infeasible individuals back to feasible region. The s-shape
function makes the violation tolerance maintain high level at
the start stage and strictly limits the solutions to reside in the
feasible region at the end stage of pull phase. SLSHADE PPS
shows significant advantages over the state-of-the-art constraint
algorithms on the 28 benchmark test functions from IEEE
CEC2017.

Index Terms—push search phase, pull search phase, s-shape
function, constraint

I. INTRODUCTION

Most scientific and engineering optimization problems have
their own constraints, which are known as the constrained opti-
mization problems (COPs). Generally, COPs can be described
as follows:

minimize f(~x), ~x = (x1, . . . , xD) ∈ S

s.t.


gj(~x) ≤ 0 j = 1, . . . , l

hj(~x) = 0 j = l + 1, . . . ,m

Li ≤ xi ≤ Ui i = 1, . . . , D

(1)

where ~x = (x1, . . . , xD) is called decision vector, xi is the ith
decision variable of decision vector ~x, Li and Ui are the lower
and upper bounds of xi respectively. S =

∏D
i=1 [Li, Ui] is the

decision space, D is the number of decision variables, f(~x)
is objective function, gj(~x) is the jth inequality constraint,
hj(~x) is the jth equality constraint, l and m− l represent the
number of inequality and equality constraints respectively.

For COPs, the degree of constraint violation of decision
vector ~x under the jth constraint can be described as follows:

Gj(~x) =

{
max{0, gj(~x)} j = 1, . . . , l

max{0, |hj(~x)− δ|} j = l + 1, . . . ,m
(2)

where δ is a positive tolerance value of equality constraint.
Subsequently, the degree of constraint violation under all
constraints can be computed as:

G(~x) =
m∑
j=1

Gj(~x) (3)

where G(~x) represents the degree of constraint violation of
decision vector ~x under all constraints. The decision variable
~x that satisfied G(~x) = 0 is called the feasible solution,
otherwise ~x is called the infeasible solution. The decision
space of COP consists of feasible region and infeasible region.

Due to the complexity of objective function and feasible
region in constrained optimization problems, traditional math-
ematical methods have limitations in solving such problems.
Therefore, more and more researchers focus on using evo-
lutionary algorithms(EAs) to solve constrained optimization
problems, and a large number of constrained optimization
evolution algorithms (COEAs) have been proposed. To sum
up, these methods can be classified into four main categories:

1) Penalty Function Method: According to different ways
of setting penalty coefficient, the penalty function can be
divided into three types : (1) static penalty functions. Her-
nandez et al [1] proposed a static penalty function to handle
constraints and used the hybrid differential evolution(DE)
algorithm to search decision space. However, the fact should
be faced the same penalty coefficient is not suitable to all kind
problems. (2) dynamic penalty functions. An s-type dynamical
penalty factor was introduced by Liu et al. [2] to balance
exploration and exploitation. Although the dynamic penalty
function shows good performance in some COPs, the lack
of the feedback information limits its ability. (3) adaptive
penalty function. Mani and Patvardhan [3] presented a hybrid
constraint handling technique for a two-population adaptive
coevolutionary algorithm, which uses a self determining and
regulating penalty factor methods as well as feasibility rules
for handling constraints.

2) Objectives and constraints separation method: The main
idea of this method is considering only constraints violations
or objective functions when comparing solutions. Among these

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

methods, feasibility rule is a simple and efficient constraint-
handling technique used by Deb [4]. Elsayed et al. [5]
proposed the concept of multi-parent crossover on the basis
of GA, and added random operation to real-coded genetic
algorithm to solve the constraint numerical optimization prob-
lems. Wang et al. [6] proposed a hybrid multi-group PSO
algorithm in which the particles are sorted by using feasibility
rules. In addition, Wang et al. extended the information of
the objective function to the feasibility rule, which can make
those individuals with small objective function discarded by
the feasible rule store into an archive [7]. In order to alle-
viate the constraint preference of feasibility rules, stochastic
ranking was presented by Runarsson and Yao [8], which
use probability Pf to determine whether selecting individuals
by objective function or by degree of constraint violation.
Takahama and Sakai [9] combined the ε-constraint method
with the comparison of kernel regression estimation to improve
the efficiency of high-quality solutions in a very small number
of function evaluations.

3) Multi-objective optimization method: In this method, the
constraint conditions are usually transformed into objective
functions to form multi-objective optimization problems. In
Cai and Wang’s method (CW) [10], important information
of some infeasible individuals is utilized to guide the pop-
ulation to converge quickly. But the algorithm must use a
trial-and-error scheme to determine some problem-dependent
parameters. To overcome shortcomings of CW algorithm,
Wang and Cai proposed an improved version CMODE [11],
which combines multi-objective optimization with DE to solve
constrained optimization problems. Jiao et al. [12] presented a
new selection strategy, which first chooses the non-dominated
individuals within an allowed level of constraint violation, then
selects other individuals based on a specially defined fitness
function.

4) Ensemble of constraint-handling techniques: Based on
the no free lunch theory [13], Mallipeddi and Suganthan [14]
proposed a hybrid of four constraint processing techniques:
feasibility rules, stochastic ranking, self-adaptive penalty func-
tions and ε-constraint, each of which is applied on a specific
subpopulation. Elsayed et al. [15] used a hybrid of feasibility
rules with ε-constraint method. Li et al. [16] presented an
adaptive constrained artificial bee colony algorithm combining
feasibility rules with multi-objective optimization method.
Wang et al. [17], [18] introduced a multi-objective optimiza-
tion method to select individuals in the infeasible stage.

In this paper, LSHADE is used as the search engine and
”push-and-pull” is adopted as the search model. In push
phase, the offspring are selected according to the value of
the objective function, without considering the influence of
constraints. In pull stage, the infeasible individuals obtained
in push search phase are pulled back to the feasible region by
s-shape constraint-handling technique. In summary, the main
contributions of this paper are as follows:
• An s-shape function is suggested for the adapting of

violation tolerance ratio. In the proposed strategy, the
violation tolerance keeps at a high level to make the can-

didates with better objective value have more opportunity
to survive in the early pull phase. After that, the violation
tolerance decreases gradually to enforce the constraints
limitation. In the late of pull phase, the violation tolerance
is close to 0 to ensure more feasible solutions stay in
population.

• The performance of the proposed SLSHADE PPS is
verified by comparing with three existing algorithms
on 28 benchmark COPs in CEC2017 [19], including
AGA PPS [20], LSHADE44 IDE [21] and LSHADE44
[22]. The experiment result shows that the proposed
SLSHADE PPS demonstrates significantly better perfor-
mance than the compared algorithms.

The remainder of this paper is organized as follows. In
Section II, LSHADE and ”push-and-pull” model are reviewed.
Section III presents the proposed algorithm in detail. The
results on 28 test instances of CEC 2017 are shown and
discussed in section IV. Section V concludes this paper.

II. LSHADE AND ”PUSH-AND-PULL” MODEL

A. LSHADE

LSHADE was proposed by R. Tanabe and A. Fukunaga [23]
in 2014. The following is a brief introduction of LSHADE.

1) DE operator in LSHADE: In LSHADE, DE/current-to-
pbest/1 is used as the search algorithm, which is modified from
DE/current-to-best/1 [24]. In DE/current-to-pbest/1, the indi-
vidual ~xpbest,t is randomly selected out one of the individuals
whose objective function values rank the first 100p% (p∈(0,1])
in the current population. Meanwhile, an external archive
A is used to store inferior solutions which are eliminated
in the process of selection, so that some individuals in A
participate in the later evolution process to guide the direction
of evolution. The DE/current-to-pbest/1 with external archive
A is described as:

~vi,t = ~xi,t + F · (~xpbest,t − ~xi,t) + F · (~xr1,t − ~x
′

r2,t) (4)

where ~xr1,t is a vector randomly selected from the current
population P , and ~x

′

r2,t represents an individual randomly
selected from the union, P∪A.

2) Scale control factor F : In each generation, the scale
control factor F of each individual ~xi,t is generated by
Cauchy distribution function based on the historical success
information. F is limited in [0,1], and its formula is as follows:

F = randc(MF , 0.1) (5)

MF is described as follows:

MF =

{
meanWL(SF), SF 6= ∅
MF , otherwise

(6)

where SF represents the archive of the F which has success-
fully generated an individual that survives into next generation.
The calculation formula of meanWL(SF) is as follows:

meanWL(SF) =

∑|SF |
k=1 wk · S2

Fk∑|SF |
k=1 wk · SFk

(7)

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

The description of wk is as follows:

wk =
∆fk∑|SF |
k=1 ∆fk

(8)

where ∆fk is the difference in the value of the objective
function between the parent and the offspring.

3) Crossover control factor CR : Similar to the way of
generating F , the crossover control factor is generated by the
standard normal distribution based on the successful historical
information. The range of CR is in [0,1], and the mathematical
description is as follows:

CR = randn(MCR, 0.1) (9)

MCR is described as follows:

MCR =

{
meanWA(SCR), SCR 6= ∅
MCR, otherwise

(10)

where SCR represents the archive of CR which has success-
fully generated an individual that survives into next generation,
and the calculation formula of meanWA(SCR) is as follows:

meanWA(SCR) =

∑|SCR|
k=1 wk · S2

CRk∑|SCR|
k=1 wk · SCRk

(11)

4) Linear population size reduction: A dynamically de-
creasing function is used in LSHADE to improve the perfor-
mance of SHADE. At generation t, the population size Nt+1

is computed according to the formula:

Nt+1 = round[(
Nmin −Ninit
MaxFEs

) · FEs+Ninit] (12)

where Nmin and Ninit represent the minimum population
size and the initial population size in the evolution process
respectively.

B. Push And Pull Framework

Push and pull framework is a two-phase search process pro-
posed by Fan et al [25]. The framework is mainly composed
of push search operator and pull search operator.

1) Push search operator: The main purpose of push search
operator is to clear the obstacle of infeasible regions and push
the objective function value to the minima. The constraint
conditions are ignored in the push search operation and the
COPs are simplified into a problem only considering an
objective function. In [20], the search model shifts from the
push phase to the pull phase, when the value of the objective
function does not change significantly, The indicator C(t) in
[20] is as follows:

C(t) =
f(~xi,t)− f(~xj,t−L)

f(~xj,t−L)− f(~xk,t−2L)
< eta (13)

where t represents the generation of the current population,
eta is the given threshold, ~xi,t , ~xj,t−L and ~xk,t−2L are the
best individuals in the period (0, t), (0, t−L) and (0, t−2L),
respectively.

2) Pull search operator: Because constraint conditions are
not considered in the push phase, the best solution which
obtained in push search operator may fall in infeasible region.
In pull phase, the infeasible solutions are pulled back into the
feasible region by some constraint handling means.

III. PROPOSED APPROACH

A. Motivation

How to balance the relationship between the objective
function and the constraints is the primary problem to solve
the COPs. ε-constraint method [26] is popular and widely
adopted by researchers because of its simple and stable se-
lection mechanism. In ε-level comparison, an order relation
on a pair of objective function value and constraint violation
(f(~x), G(~x)) is defined. The ε-constraint method converts a
constrained optimization problem into an unconstrained one
by replacing the order relation with the ε level comparison.
However, it is difficult to find an appropriate ε value to balance
the relationship between constraints and objectives.

In view of the above discussion, we propose an s-shape
curve as the violation tolerance valve, which dynamically
changes the value of ε in the evolution process. This method
not only pushes the population into the feasible region ef-
ficiently, but also alleviates the sensitivity of specific ε in
advance.

B. S-shape constraint handling technique

In the SLSHADE PPS, we introduce an s-shape curve to
adaptively adjust the violation tolerance ratio s(t) in each
generation t. The function of s-shape curve s(t) is as follows:

s(t) =
1

1 + eα(
t

MaxFEs−β)
(14)

The shape of s(t) is determined by two parameters α and
β. The parameter α impacts slope of the curve. Fig.1 shows
the curves of different α values when β stays 0.5. It can be
seen from Fig.1 that the larger the α is, the greater the slope
is in the middle of the curve and the slower the change is at
both start and end stage. Fig.2 shows the curves of different

Fig. 1. β = 0.5, α changes.

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

β values when α=15. It can be seen from Fig.2 that β value
influences the length of head and tail. The curve has a long
even tail with a small β, whereas the curve has a short tail
and a long flat head with a large β.

Fig. 2. α=20, β changes.

Using s-shape constraint handling method to deal with con-
straint conditions, the value of violation tolerance ε decreases
very slowly in the early stage to improve the diversity of the
population, whereas ε should be maintained near or at 0 for
a certain period to enforce the limitation of violation in the
later stage. Therefore, we use s-shape curve to adjust ε in the
pull phase, which is described as follows:

ε(t) =

{
Maxcv · s(t), t < 0.8 ∗MaxFEs

0 , otherwise
(15)

where Maxcv is the maximum of constraint violation in the
current population. Because of the small variation of s(t) in
the early stage, ε(t) decreases very slowly which is beneficial
to the diversity of the population. In the later stage, when
its value approaches 0, ε-constraint method will degenerate
into feasibility rules, which is beneficial to accelerating the
convergence rate of the population.

C. Framework

SLSHADE PPS includes two main phases: the push phase
and the pull phase. LSHADE is employed as a search engine in
the above two phases. Because constraints are not considered
in the push phase, the constraint violation tolerance ε=∞. In
the pull phase, ε is updated by the s-shape constraint handling
technique. The framework of SLSHADE PPS is presented in
Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Benchmark Test Functions and Parameter Settings

To validate the performance of the SLSHADE PPS, we
employ a set of 28 benchmark functions with 30-D developed
in IEEE CEC2017 [19] . The details of these functions
can be found in [19] and the objective function of all test
functions should be minimized. In the experimental study

Algorithm 1 SLSHADE PPS
1: Input:

• MaxFEs: maximum number of fitness evaluation.
• H: the length of the historic memory.
• α, β: the parameters of s-shaped curve.
• Nmin, Ninit: the minimum size of population and the

initial size of population.
• A: external archive.
• SCR: successful CR storage.
• SF : successful F storage.

2: Output:
• the feasible individual with the smallest objective

function value in the population.
3: Initialization:

• t=1.
• Generate an initial population Pt = {x1,t, . . . , xN,t}

by uniformly randomly sampling from the decision
space .

• set fpush = 1 //set the population in push phase
• set CR = 0.5, F = 0.5, ε=∞.
• Evaluate f(~xi,t+1) and G(~xi,t+1) for each individual

in Pt.
• FEs = N .

4: while FEs ≤MaxFEs do
5: for i := 1 to N do
6: For ~xi,t, an offspring ~xi,t+1 is generated by Eq.(4)
7: Evaluate f(~xi,t+1) and G(~xi,t+1), update ~xbest.
8: if max(G(~xi,t+1)−ε, 0) < max(G(~xi,t)−ε, 0) then
9: replace ~xi,t with ~xi,t+1, store ~xi,t to A.

10: store |G(~xi,t)−G(~xi,t+1)|.
11: store F to SF .
12: store CR to SCR.
13: end if
14: if max(G(~xi,t+1) − ε, 0) = max(G(~xi,t) − ε, 0) ∧

f(~xi,t+1) < f(~xi,t) then
15: replace ~xi,t with ~xi,t+1,store ~xi,t to A.
16: store |f(~xi,t)− f(~xi,t+1)|.
17: store F to SF .
18: store CR to SCR.
19: end if
20: end for
21: Calculate the value of C(t) by Eq.(13)
22: if C(t) < eta then
23: fpush = 0 //change the push phase into pull phase
24: end if
25: Update F by Eq.(5)
26: Update CR by Eq.(9)
27: Update population size Nt by Eq.(12)
28: Resize archive size NA of |A| according to Nt
29: if fpush = 0 then
30: Update ε by Eq.(15)
31: end if
32: t=t+1
33: end while

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

of SLSHADE PPS, the maximum number of evaluations
MaxFEs and the tolerance value δ for equality constraints are
respectively set to 1.0× 106 and 0.0001 as suggested in [19].

LSHADE is served as a search engine in our algorithm, the
population size N is decreased linearly in the whole process of
evolution. The control parameters of LSHADE in the proposed
algorithm are: (1) the initial population size Ninit is 200, (2)
the minimum population size Nmin is 50, (3) the size of the
external archive NA is 2.6 ·Nt, (4) p value in DE/current-to-
pbest/1 is 0.11.

Next, we investigate different α and β values in formula
(14) to select the best ones for optimizing the performance of
SLSHADE PPS.

1) Adjusting the parameter β: Under the condition of
α = 15, we take the values of β as 0.3, 0.5, 0.7 and 0.9,
respectively, and run them independently on the 28 benchmark
test functions for 25 times. Table I presents the mean objective
function value and standard deviation (denoted as ”mean” and
”std”) with the different β, and the relatively good values
are shown in boldface. To show the performance clearly, the
Friedman’s ranking is used to get their rankings. As seen
in Table II, β=0.5 achieves the best ranking. Therefore, the
parameter β is set to 0.5 in the following experiments.

2) Adjusting the parameter α: Again, β is fixed at 0.5, α =
10, 15, 20 and 25 respectively, and run independently on the
test functions for 25 times. The mean objective function value
and standard deviation with different α value are demonstrated
in Table III. The Friedman’s ranking is also used to get their
rankings. As seen in Table IV, α=15 achieves the best ranking.
Therefore, the parameter β=0.5 and α=15 are selected in the
following experiments.

B. Comparison SLSHADE PPS with other state-of-the-art
Algorithms

Finally, the performance of SLSHADE PPS is compared
with three popular COEAs on the 28 test functions from IEEE
2017 [15].
• AGA PPS [20]: adaptive GA with push and pull search

method
• LSHADE44 IDE [21]: Framework of L-SHADE44 and

IDE
• LSHADE44 [22]: An enhanced version of L-SHADE

algorithm
The parameters setting of above there compared algorithms

is the same as their original articles. Table VI summarizes the
mean objective function value and standard deviation derived
from the three compared algorithms over 25 independent runs.
As shown in Table VI, SLSHADE PPS obtains 22 best results
among the 28 test functions, except C01, C05, C11, C16,
C20, C28. The compared AGA PPS, LSHADE44 IDE and
LSHADE44 get 8, 2 and 8 best results respectively. In contrast,
AGA PPS surpass SLSHADE PPS on 3 functions (C11, C16
and C28), LSHADE44 IDE can not surpass SLSHADE PPS
on any functions, LSHADE44 outperforms SLSHADE PPS
on 3 functions(C01, C05 and C20). The Friedman’s ranking
is still conducted to obtain the rankings for D = 30. and results

TABLE I
THE RESULTS OF SLSHADE PPS WITH DIFFERENT β

β=0.3 β=0.5 β=0.7 β=0.9

C01 mean 2.97E-30 5.94E-30 6.12E-30 4.36E-30
std 4.99E-30 8.61E-30 8.21E-30 6.79E-30

C02 mean 8.56E-30 6.24E-30 2.39E-30 4.61E-30
std 9.90E-30 7.54E-30 4.69E-30 6.95E-30

C03 mean 1.01E+02 8.88E+01 7.85E+01 7.25E+01
std 5.02E+01 3.24E+01 1.44E+01 1.56E+01

C04 mean 1.36E+01 1.36E+01 1.36E+01 1.36E+01
std 3.63E-15 3.63E-15 3.78E-03 3.63E-15

C05 mean 6.11E-30 5.25E-30 5.44E-30 3.82E-30
std 1.36E-29 1.09E-29 1.38E-29 8.12E-30

C06 mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C07 mean -1.16E+03 -1.28E+03 -1.27E+03 -1.27E+03
std 4.48E+01 3.17E+01 2.98E+01 3.74E+01

C08 mean -2.84E-04 -2.84E-04 -2.84E-04 5.98E-05
std 1.11E-19 1.11E-19 4.68E-07 3.66E-04

C09 mean -2.67E-03 -2.67E-03 -2.67E-03 -2.67E-03
std 8.85E-19 8.85E-19 8.85E-19 2.22E-07

C10 mean -1.03E-04 -1.03E-04 -1.03E-04 -7.46E-05
std 1.38E-20 1.38E-20 6.26E-08 3.60E-05

C11 mean -1.85E+01 -2.65E+02 -1.10E+03 -1.36E+03
std 3.40E+01 2.83E+02 4.76E+02 4.55E+02

C12 mean 3.98E+00 3.98E+00 3.98E+00 3.98E+00
std 4.78E-05 5.85E-05 4.78E-05 4.88E-05

C13 mean 1.45E-27 7.93E-28 1.59E-01 3.75E-27
std 2.63E-27 1.65E-27 7.97E-01 1.14E-26

C14 mean 1.41E+00 1.41E+00 1.41E+00 1.43E+00
std 6.80E-16 6.80E-16 1.06E-02 3.92E-02

C15 mean 5.50E+00 2.36E+00 2.36E+00 2.36E+00
std 9.06E-16 9.06E-16 9.06E-16 9.06E-16

C16 mean 6.85E+00 6.28E+00 6.28E+00 6.28E+00
std 1.35E+00 6.45E-08 1.30E-06 1.57E-06

C17 mean 4.69E-01 3.09E-01 3.52E-01 2.07E-01
std 1.80E-01 4.40E-01 5.33E-01 3.28E-01

C18 mean 3.65E+01 3.65E+01 3.65E+01 3.65E+01
std 1.35E-03 2.25E-03 1.44E-03 6.03E-02

C19 mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C20 mean 1.65E+00 1.64E+00 1.66E+00 1.64E+00
std 1.05E-01 1.46E-01 1.20E-01 1.49E-01

C21 mean 2.12E+01 4.92E+00 8.35E+00 7.09E+00
std 9.84E+00 2.17E+00 9.04E+00 6.81E+00

C22 mean 3.23E+00 3.25E+00 2.11E-01 3.30E+00
std 1.61E+01 1.63E+01 7.48E-01 1.65E+01

C23 mean 1.42E+00 1.41E+00 1.42E+00 1.42E+00
std 2.88E-02 1.74E-02 2.88E-02 2.88E-02

C24 mean 5.37E+00 2.73E+00 2.36E+00 2.48E+00
std 6.28E-01 1.04E+00 9.06E-16 6.28E-01

C25 mean 1.04E+01 6.35E+00 6.35E+00 6.41E+00
std 3.33E+00 3.14E-01 3.14E-01 4.35E-01

C26 mean 7.34E-01 3.63E-01 2.55E-01 3.13E-01
std 1.37E-01 2.40E-01 2.65E-01 3.52E-01

C27 mean 3.65E+01 3.65E+01 3.65E+01 3.64E+01
std 1.87E-03 1.33E-03 2.00E-03 2.13E-01

C28 mean 6.38E+01 5.62E+01 3.79E+00 3.05E+00
std 2.37E+01 3.25E+01 4.19E+00 4.45E+00

TABLE II
FRIEDMAN’S RANKINGS OF SLSHADE PPS WITH DIFFERENT β

β values Ranking
β=0.3 2.82
β=0.5 2.11
β=0.7 2.55
β=0.9 2.51

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE RESULTS OF SLSHADE PPS WITH DIFFERENT α

α=10 α=15 α=20 α=25

C01 mean 5.71E-30 5.94E-30 5.68E-30 4.48E-30
std 6.88E-30 8.61E-30 7.55E-30 6.94E-30

C02 mean 4.03E-30 6.24E-30 5.78E-30 6.45E-30
std 6.04E-30 7.54E-30 7.78E-30 7.74E-30

C03 mean 8.32E+01 8.88E+01 7.17E+01 9.01E+01
std 2.20E+01 3.24E+01 1.49E+01 3.01E+01

C04 mean 1.36E+01 1.36E+01 1.36E+01 1.36E+01
std 3.63E-15 3.63E-15 3.63E-15 3.63E-15

C05 mean 4.39E-30 5.25E-30 5.88E-30 4.07E-30
std 1.43E-29 1.09E-29 1.52E-29 7.46E-30

C06 mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C07 mean -1.25E+03 -1.28E+03 -1.26E+03 -1.27E+03
std 2.45E+01 3.17E+01 4.16E+01 3.82E+01

C08 mean -2.84E-04 -2.84E-04 -2.84E-04 -2.84E-04
std 1.11E-19 1.11E-19 1.11E-19 5.77E-12

C09 mean -2.67E-03 -2.67E-03 -2.67E-03 -2.67E-03
std 8.85E-19 8.85E-19 8.85E-19 8.85E-19

C10 mean -1.03E-04 -1.03E-04 -1.03E-04 -1.03E-04
std 1.38E-20 1.38E-20 1.38E-20 1.08E-11

C11 mean -9.62E+01 -2.65E+02 -4.73E+02 -7.95E+02
std 2.17E+02 2.83E+02 4.06E+02 6.18E+02

C12 mean 3.98E+00 3.98E+00 3.98E+00 3.98E+00
std 4.54E-05 5.85E-05 3.44E-05 5.18E-05

C13 mean 4.99E-28 7.93E-28 4.49E-28 1.90E-27
std 1.14E-27 1.65E-27 1.70E-27 4.88E-27

C14 mean 1.41E+00 1.41E+00 1.41E+00 1.43E+00
std 6.80E-16 6.80E-16 1.74E-02 3.32E-02

C15 mean 4.62E+00 2.36E+00 2.36E+00 2.36E+00
std 1.44E+00 9.06E-16 9.06E-16 2.00E-08

C16 mean 6.35E+00 6.28E+00 6.28E+00 6.28E+00
std 3.14E-01 6.45E-08 2.00E-07 8.21E-08

C17 mean 4.19E-01 3.09E-01 1.64E-01 3.67E-01
std 4.39E-01 4.40E-01 2.82E-01 5.02E-01

C18 mean 3.65E+01 3.65E+01 3.65E+01 3.65E+01
std 2.24E-03 2.25E-03 2.61E-03 2.50E-03

C19 mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C20 mean 1.66E+00 1.64E+00 1.63E+00 1.62E+00
std 1.34E-01 1.46E-01 1.40E-01 1.67E-01

C21 mean 1.29E+01 4.92E+00 7.60E+00 6.40E+00
std 1.10E+01 2.17E+00 8.04E+00 6.79E+00

C22 mean 1.60E-01 3.25E+00 3.27E+00 3.58E+00
std 7.97E-01 1.63E+01 1.63E+01 1.62E+01

C23 mean 1.42E+00 1.41E+00 1.42E+00 1.42E+00
std 2.88E-02 1.74E-02 3.25E-02 2.41E-02

C24 mean 5.00E+00 2.73E+00 2.36E+00 2.36E+00
std 1.18E+00 1.04E+00 2.00E-08 9.06E-16

C25 mean 8.61E+00 6.35E+00 6.35E+00 6.41E+00
std 2.84E+00 3.14E-01 3.14E-01 4.35E-01

C26 mean 6.78E-01 3.63E-01 3.05E-01 2.50E-01
std 1.58E-01 2.40E-01 2.51E-01 1.83E-01

C27 mean 3.65E+01 3.65E+01 3.65E+01 3.65E+01
std 1.35E-03 1.33E-03 2.31E-03 2.01E-03

C28 mean 6.22E+01 5.62E+01 5.89E+00 2.47E+00
std 2.76E+01 3.25E+01 5.78E+00 4.11E+00

reported in Table V. From Table V, SLSHADE PPS achieves
the first average ranking among the four algorithms, followed
by AGA PPS. LSHADE44 and LSHADE44 IDE obtain the
thrid ranking and the fourth ranking ,respectively.

Furthermore, the Friedman’s test with the Bonferroni-Dunn
method is carried out via KEEL software to compare the
performance of multiple methods concurrently. In Table VII,
SLSHADE PPS obtains higher R+ values than R− values in

TABLE IV
FRIEDMAN’S RANKINGS OF SLSHADE PPS WITH DIFFERENT α

α values Ranking
α=10 2.95
α=15 2.21
α=20 2.38
α=25 2.46

TABLE V
AVERAGE RANKINGS OF FOUR ALGORITHMS

Algorithms Ranking
AGA PPS 2.23
LSHADE44 IDE 3.48
LSHADE 2.86
SLSHADE PPS 1.43

all cases, the p-values of all cases are less than 0.05 which
indicates that SLSHADE PPS significantly better than the
three competitors.

The above comparison verifies that SLSHADE PPS has
better performance than the three competitors on the 28
benchmark test functions from IEEE CEC2017.

TABLE VII
STASTICAL TEST RESULTS OF PPS LSHADE AND OTHER THREE

COMPARED ALGORITHMS BY THE MULTIPLE-PROBLEM WILCOXON’S
SOGMED RANK TEST

SLSHADE PPS VS R+ R− p-value α=0.1 α=0.05
AGA PPS 339.5 66.5 1.23E-3 Yes Yes

LSHADE44 IDE 378.0 0.0 1.49E-8 Yes Yes
LSHADE44 378.0 28.0 1.11E-5 Yes Yes

V. CONCLUSION

Based on the discussion of the balancing between the con-
straints and objective functions, we divide the entire evolution
process into two phases under the push and pull search model.
In the push phase, constraint violation is without consideration
and the change of objective values is monitored. In the pull
search phase, we use s-shape curve to dynamically change
the violation tolerance of ε. The SLSHADE PPS algorithm
balances well the relationship between the objective function
and the constraint violation. Experimental results show that:

1) SLSHADE PPS shows better or at least competitive per-
formance over the compared constrained optimization
evolutionary algorithms.

2) The use of s-shape constraint technique improves the
diversity of the population in the pull search phase and
has a significant impact on balancing the relationship
between constraints and objective functions.

ACKNOWLEDGMENT

This work is part funded by the National Natural Science
Foundation of China (Nos. 61966019, 61603163) the open
fund from Key Lab of Digital Signal and Image Process-
ing of Guangdong Province (No.2019GDDSIPL-04) and the
Fundamental Research Funds for the Central Universities
(No.CCNU20TS026).

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
EXPERIMENTAL RESULTS OF AGA PPS, LSHADE44 IDE, LSHADE44 AND SLSHADE PPS

AGA PPS LSHADE44 IDE LSHADE44 SLSAHDE PPS

C01 Mean 6.27E-29 8.66E-17 4.92E-30 5.94E-30
Std 3.11E-29 3.03E-17 9.49E-30 8.61E-30

C02 Mean 9.31E-29 9.95E-17 6.79E-30 6.24E-30
Std 7.32E-29 3.43E-17 8.35E-30 7.54E-30

C03 Mean 9.76E+02 6.43E+06 3.93E+05 8.88E+01
Std 3.22E+02 2.72E+06 4.76E+05 3.24E+01

C04 Mean 2.13E+01 1.46E+01 1.36E+01 1.36E+01
Std 6.43E+00 1.24E+00 3.63E-15 3.63E-15

C05 Mean 6.40E-28 1.33E-16 0.00E+00 5.25E-30
Std 9.10E-28 7.41E-17 0.00E+00 1.09E-29

C06 Mean 4.09E+02 5.39E+03 4.23E+03 0.00E+00
Std 4.79E+01 8.04E+02 9.25E+02 0.00E+00

C07 Mean -1.74E+02 -9.93E+01 -9.91E+01 -1.28E+03
Std 5.66E+01 6.43E+01 7.75E+01 3.17E+01

C08 Mean -2.84E-04 -2.52E-04 -2.84E-04 -2.84E-04
Std 3.45E-09 3.43E-05 1.11E-19 1.11E-19

C09 Mean -2.67E-03 -2.67E-03 -2.67E-03 -2.67E-03
Std 8.85E-19 1.62E-09 8.85E-19 8.85E-19

C10 Mean -1.03E-04 -9.78E-05 -1.03E-04 -1.03E-04
Std 3.47E-09 4.87E-06 1.38E-20 1.38E-20

C11 Mean -3.81E+02 -8.39E-01 -9.00E-01 -2.65E+02
Std 3.44E+02 1.24E-01 7.39E-02 2.83E+02

C12 Mean 3.98E+00 5.37E+00 3.98E+00 3.98E+00
Std 2.86E-04 2.52E+00 1.23E-03 5.85E-05

C13 Mean 1.59E-01 2.27E+01 4.69E+00 7.93E-28
Std 7.97E-01 3.71E+01 4.23E+00 1.65E-27

C14 Mean 1.45E+00 1.92E+00 1.82E+00 1.41E+00
Std 7.09E-02 5.51E-02 7.92E-02 6.80E-16

C15 Mean 2.98E+00 1.27E+01 1.79E+01 2.36E+00
Std 1.81E+00 1.44E+00 3.20E+00 9.06E-16

C16 Mean 0.00E+00 1.49E+02 1.50E+02 6.28E+00
Std 0.00E+00 1.04E+01 9.37E+00 6.45E-08

C17 Mean 1.23E+00 1.01E+00 9.99E-01 3.09E-01
Std 2.46E-01 1.80E-02 1.50E-02 4.40E-01

C18 Mean 3.66E+01 6.06E+03 2.90E+03 3.65E+01
Std 3.39E-01 1.13E+04 4.05E+03 2.25E-03

C19 Mean 0.00E+00 0.00E+00 6.35E-06 0.00E+00
Std 0.00E+00 0.00E+00 2.88E-07 0.00E+00

C20 Mean 4.44E+00 2.23E+00 1.45E+00 1.64E+00
Std 7.48E-01 2.14E-01 1.13E-01 1.46E-01

C21 Mean 7.65E+00 2.93E+01 2.10E+01 4.92E+00
Std 3.20E+00 1.03E+01 9.33E+00 2.17E+00

C22 Mean 1.43E+02 8.29E+02 1.42E+03 3.25E+00
Std 1.80E+02 1.17E+03 2.10E+03 1.63E+01

C23 Mean 1.43E+00 1.82E+00 1.71E+00 1.41E+00
Std 2.96E-02 6.05E-02 9.28E-02 1.74E-02

C24 Mean 2.98E+00 1.34E+01 1.29E+01 2.73E+00
Std 1.28E+00 1.60E+00 1.54E+00 1.04E+00

C25 Mean 1.90E+01 1.44E+02 1.42E+02 6.35E+00
Std 9.54E+00 1.16E+01 7.55E+00 3.14E-01

C26 Mean 9.24E-01 1.01E+00 1.00E+00 3.63E-01
Std 2.01E-01 8.63E-03 1.49E-02 2.40E-01

C27 Mean 3.79E+01 4.49E+04 1.29E+04 3.65E+01
Std 5.37E+00 4.60E+04 2.21E+04 1.33E-03

C28 Mean 5.22E+01 1.33E+02 1.44E+02 5.62E+01
Std 2.21E+01 3.85E+01 1.44E+02 3.25E+01

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Hernndez, G. Leguizamn, E. Mezura-Montes, “Hybridization of
differential evolution using hill climbing to solve constrained opti-
mization problems,” Inteligencia Artificial. Revista Iberoamericana de
Inteligencia Artificial, 2013, 16(52): 3-15.

[2] J. Liu, K. L. Teo, X. Wang, et al, “An exact penalty function-based
differential search algorithm for constrained global optimization,” Soft
Computing, 2016, 20(4): 1305-1313.

[3] A. Mani, C. Patvardhan, “A novel hybrid constraint handling technique
for evolutionary optimization,” IEEE Congress on Evolutionary Com-
putation. IEEE, 2009: 2577-2583.

[4] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer methods in applied mechanics and engineering, 2000, 186(2-
4): 311-338.

[5] S. M. Elsayed, R. A. Sarker, D. L. Essam, “GA with a new multi-parent
crossover for constrained optimization,” IEEE Congress of Evolutionary
Computation (CEC). IEEE, 2011: 857-864.

[6] Y. Wang, Z. Cai, “A hybrid multi-swarm particle swarm optimization
to solve constrained optimization problems,” Frontiers of Computer
Science in China, 2009, 3(1): 38-52.

[7] Y. Wang, B. C. Wang, H. X. Li, et al, “Incorporating objective func-
tion information into the feasibility rule for constrained evolutionary
optimization,” IEEE Transactions on Cybernetics, 2015, 46(12): 2938-
2952.

[8] T. P. Runarsson, X. Yao, “Stochastic ranking for constrained evolutionary
optimization,” IEEE Transactions on evolutionary computation, 2000,
4(3): 284-294.

[9] T. Takahama, S. Sakai, “Efficient constrained optimization by the ε
constrained differential evolution with rough approximation using kernel
regression,” IEEE Congress on Evolutionary Computation. IEEE, 2013:
1334-1341.

[10] Z. Cai, Y. Wang, “A multiobjective optimization-based evolutionary
algorithm for constrained optimization,” IEEE Transactions on evolu-
tionary computation, 2006, 10(6): 658-675.

[11] Y. Wang, Z. Cai, “Combining multiobjective optimization with dif-
ferential evolution to solve constrained optimization problems,” IEEE
Transactions on Evolutionary Computation, 2012, 16(1): 117-134.

[12] L. Jiao, L. Li, R. Shang, et al, “A novel selection evolutionary strategy
for constrained optimization,” Information Sciences, 2013, 239: 122-141.

[13] D. H. Wolpert, W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE transactions on evolutionary computation, 1997, 1(1):
67-82.

[14] R. Mallipeddi, P. N. Suganthan, “Ensemble of constraint handling
techniques,” IEEE Transactions on Evolutionary Computation, 2010,
14(4): 561-579.

[15] S. M. Elsayed, R. A. Sarker, D. L. Essam, “Integrated strategies differen-
tial evolution algorithm with a local search for constrained optimization,”
IEEE Congress of Evolutionary Computation (CEC). IEEE, 2011: 2618-
2625.

[16] X. Li, M. Yin, “Self-adaptive constrained artificial bee colony for con-
strained numerical optimization,” Neural Computing and Applications,
2014, 24(3-4): 723-734.

[17] Y. Wang, Z. Cai, Y. Zhou, et al, “An adaptive tradeoff model for con-
strained evolutionary optimization,” IEEE Transactions on Evolutionary
Computation, 2008, 12(1): 80-92.

[18] Y. Wang, Z. Cai, “Constrained evolutionary optimization by means of
(µ+λ)-differential evolution and improved adaptive trade-off model,”
Evolutionary Computation, 2011, 19(2): 249-285.

[19] G. Wu, R. Mallipeddi, P. N. Suganthan, “Problem definitions and
evaluation criteria for the CEC 2017 competition on constrained real-
parameter optimization,” National University of Defense Technology,
Changsha, Hunan, PR China and Kyungpook National University,
Daegu, South Korea and Nanyang Technological University, Singapore,
Technical Report, 2017.

[20] Z. Fan, Z. Wang, Y. Fang, W. Li, Y. Yuan, X. Bian, “Adaptive
Recombination Operator Selection in Push and Pull Search for Solv-
ing Constrained Single-Objective Optimization Problems,” International
Conference on Bio-Inspired Computing: Theories and Applications,
2018: 355-367.

[21] J. Tvrdk, R. Polkov, “A simple framework for constrained problems with
application of L-SHADE44 and IDE,” IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2017: 1436-1443.

[22] R. Polkov, “L-SHADE with competing strategies applied to constrained
optimization,” IEEE congress on evolutionary computation (CEC).
IEEE, 2017: 1683-1689.

[23] R. Tanabe, A. S. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” IEEE congress on
evolutionary computation (CEC). IEEE, 2014: 1658-1665.

[24] R. Storn, K. Price, “Differential evolution − A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Int.
Comput. Sci. Inst., Berkeley, CA, USA, Tech. Rep. TR-95-012, 1995.

[25] Z. Fan, W. Li, X. Cai, et al, “Push and pull search for solving constrained
multi-objective optimization problems,” Swarm and evolutionary com-
putation, 2019, 44: 665-679.

[26] Takahama. T, Sakai. S, “Constrained optimization by the ε constrained
differential evolution with an archive and gradient-based mutation,”
IEEE Congress of Evolutionary Computation (CEC). IEEE, 2010: 1-9.

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 01:15:24 UTC from IEEE Xplore. Restrictions apply.

